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Gas transport in tight porous media
Gas kinetic approach
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Abstract

We describe the flow of gas in a porous medium in the kinetic regime, where the viscous flow structure is not formed in separate pores. Special
attention is paid to the dense kinetic regime, where the interactions within the gas are as important as the interaction with the porous medium.
The transport law for this regime is derived by means of the gas kinetic theory, in the framework of the model of “heavy gas in light one”. The

computations of the gas kinetic theory are confirmed by the dimension analysis and a simplified derivation revealing the considerations behind the
kinetic derivation. The role of the thermal gradient in the transport law is clarified.
© 2007 Elsevier B.V. All rights reserved.
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. Introduction

Transport of gases in tight porous media is important to a
umber of practical applications: chemical catalysis and chro-
atography; adsorption on activated carbons, molecular sieves

nd other microporous media; membrane transport; transport in
ight natural gas reservoirs, and others [1–3]. This is the reason
hy this transport has been intensively studied, both theoreti-

ally and experimentally. The early history of such studies is
iscussed in Ref. [1]. The most widely used approaches to the
ulticomponent gas transport in micro- and mesoporous media

re the so-called dusty-gas model [1], the phenomenological
pproaches based on the Maxwell–Stefan relations or the Fick
aw [2], and direct modeling with random walks [4,5]. The
ransport relations for such flows are normally considered to
e well established, and the recent studies in the area are mostly
xperimental studies determining different coefficients in these
elations [6–9].
Meanwhile, two questions remain incompletely covered in
he literature. The first question is the gas behavior in the inter-

ediate regime, between the Knudsen regime corresponding
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o a very rarified gas and the viscous regime where the gas in
he pores flows as a continuous phase. Interpolation between
he two extreme regimes is normally carried out by means of
he Weber or a similar equation [8], although non-monotonous
ehavior of the permeability with density has been observed
10,1].

The second open question is the role of the thermal gradient
n the transport equation. In the Knudsen regime the coefficient
t the ∇(ln T ) is minus half the coefficient at ∇(lnP), so that
he equilibrium condition is given by PT−1/2 = const. For the
iscous regime, the term proportional to the thermal gradient
s usually neglected in the transport (Darcy) law. This may be
roven on the basis of the rather general considerations [11],
lthough some molecular simulation studies indicate that the
hermal gradient may be influential even for this regime [12].
he intermediate behavior remains unclear.

In the present work we investigate this behavior by means of
he gas kinetic theory. Several approaches to gas flow in porous

edia have been developed in the framework of this theory
see, for example [10,1,13–15]). We suggest a new approach to
as flow in a porous medium different from that of the dusty-gas
odel [1]. Our model is similar to the model of “motion of
eavy gas in light one” [16], in the system of coordinates
onnected with the “heavy gas” particles representing the
orous medium. Similar, although not fully equivalent theories
ave been applied to description of the phoresis of heavy (dusty)
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articles in gas [17,1]. We show that the thermal gradient is
mportant in both the Knudsen and the intermediate regime.

Since the gas kinetic derivation is rather elaborate and is not
lways transparent, we also provide two other derivations of the
ransport law. First, we show that the dimensionality considera-
ions make it possible to determine the transport law within the
wo coefficients dependent on the Knudsen number. Then we
uggest a “naive”, or simplified derivation, assuming the molec-
lar velocities to be equal to their average value, as it has long
een applied in the gas kinetic theory [18, Chapter 1, p. 2]. These
erivations are given for illustrative purposes, in order to uncover
hysical considerations behind the strict gas kinetic derivation.
he contribution of the thermal gradient to the transport in the

ntermediate regime may only be evaluated by means of the gas
inetic theory, since it depends on higher approximations in the
hapman–Enskog expansion for the Boltzmann equation for the
olecular distribution.
Comparison of the three derivations makes it possible to draw

ome conclusions about the shape of the transport coefficients,
hich are discussed in the last section of the paper.

. Transport law: dimensional analysis

The most general form of the transport law in porous media
ay be established on the basis of the dimensional analysis

19]. The procedure consists in determining the essential param-
ters of the process under study, then forming dimensionless
omplexes and expressing them in terms of each other.

We consider a flow of gas in an isotropic porous medium,
riven by the pressure gradient ∇P and the temperature gradient
T . Assume that the flow is non-structured, that is, there is no

orrelation between the position of a molecule in the pore space
nd the characteristics of its motion: momentum and energy.
his is a reasonable assumption if the free run of a molecule lf is
f the same order of magnitude or larger than the characteristic
ore size dp. In this case the molecules and the porous medium
re assumed to be perfectly “mixed”.

An opposite case considered in the literature (especially
elated to ground flows and transport in natural gas reservoirs) is
f � dp. In this case multiple molecules inside each pore form a
iscous flow structure, with no-slip or similar conditions on the
ore walls and the highest velocities close to the pore centers.
n the macroscopic level transport in this regime is described
y the well-known Darcy law. It will not be considered here.

The free run path for not-so-large molecules in gas is around
0−7 m and decreases approximately inversely proportionally to
ressure (although the decrease slows down at high pressures)
18]. Thus, for the mesopores of the sizes of 10−8 to 10−9 m the
ow does not exhibit the viscous structure up to the pressures of
ew megapascals. Moreover, if the pore size dp is of the order
f several molecular diameters dm, the number of molecules in
pore is restricted and, again, the structure characteristic of the
iscous flow is impossible.
We would like to establish the relation between the mass-
veraged flow velocity of the gas u and the gradients of pressure
nd temperature in the non-structured flow. We discuss the inter-
titial velocity. To obtain the superficial velocity the result should

s

α
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e multiplied by porosity φ. Normally the flow of gas in a porous
edium is rather slow and occurs under such gradients and

elocities that common relations of the linear non-equilibrium
hermodynamics may be applied. That is, the flow velocity
epends linearly on the pressure and temperature gradients, with
ome coefficients KT and KP:

= KT∇T +KP∇P (1)

This equation may be represented in another, equivalent, but
ore convenient form, by introducing a characteristic molecular

elocity v. In terms of the molecular mass m and the Boltzmann
onstant k and by neglecting a multiplier of the order of unity
or considering the velocity projection on a chosen direction),

=
(
kT

m

)1/2

(2)

Coefficients KT and KP are conveniently expressed in terms
f the (still undetermined) coefficients lT, lP:

T = lTv

T
, KP = − lPv

P

Then Eq. (1) assumes the form of

u
v

= lT
∇T
T

− lP
∇P
P

(3)

Obviously, coefficients lT, lP have the dimension of a length.
he sign of lT, lP is chosen such that, as shown below, these
alues are likely to be positive.

A priori, the values of lT, lP may depend on all the param-
ters constituting the system: thermodynamic characteristics of
he gas, its transport properties, molecular and pore sizes, char-
cteristics of the pore shapes. We omit from this list transport
roperties like viscosity, since, according to our assumptions, the
as does not form a viscous flow structure. Moreover, we omit
he dimensionless characteristics of the porous space from the
ist of parameters, since only dimensional values may be taken
nto consideration by the dimensional analysis. The dependence
f lT, lP on the porosity φ and, probably, characteristics of the
eometry of the porous space is assumed implicitly. Dependence
n other parameters is expressed by

T = lT(P, T, dp, dm, lf,m); lP = lP(P, T, dp, dm, lf,m)

Since lf = lf(P, dm,m), one of these values, say, P, may be
xcluded. Moreover, since T is the only remaining variable hav-
ng the dimension of Kelvin, it may be excluded, too. Finally,
mong the rest of the values, m is the only one having a dimension
f a mass, hence it may also be excluded. The remaining vari-
bles have the dimension of a length. If we choose the size of a
ore dp as a characteristic length, four dimensionless complexes
re formed:

T = lT

dp
; αP = lP

dp
; Kn = lf

dp
; δ = dm

dp
(4)
Parameter Kn is known as the Knudsen number. The dimen-
ionless relations have the form of

T = αT(Kn, δ); αP = αP(Kn, δ) (5)
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Thus, the dimensional analysis makes it possible to derive
he following general relation for the non-structured gas flow in
porous medium: combining Eqs. (3)–(5), we obtain

= αT(Kn, δ)dpv
∇T
T

− αP(Kn, δ)dpv
∇P
P

(6)

The values of αi (i = T, P) may also depend on particular
imensionless properties of the porous medium, such as porosity
, characteristics of pore and particle shapes, of the packing,
tc. Dimension-based considerations cannot be used to obtain a
articular form of such dependence, which may be different for
ifferent particular models of a porous medium.

Expressions for αi may be simplified for different flow
egimes, that is, for different asymptotic relations between
arameters δ and Kn. The value of δmay be of the order of unity
r much less than unity. The case where δ � 1, or, the same,
m � dp is, obviously, unrealistic. The case Kn � 1 is not con-
idered here, since in this case lf � dp, which corresponds to
he conditions of the viscous flow. Thus, the three asymptotic
egimes may correspond to the kinetic flow regime: (1) δ ∼ 1;
2) δ � 1,Kn ∼ 1; and (3) δ � 1,Kn � 1.

If δ ∼ 1 (the first regime), the pore sizes are comparable to
he particle sizes. This is the case of a dense membrane. It is
elevant to transport in zeolites, polymers and some adsorbents,
nd is usually studied on the basis of the different random walk
odels or Maxwell–Stefan relations ([20,21] and refs therein).
n opposite case of the open matrix is where the molecular

izes are much smaller than the pore sizes (regimes 2 and 3).
n this limit, δ → 0, dependence of the coefficients αi on this
arameter disappears, and the only varying parameter becomes
he Knudsen number Kn:

i = αi(Kn) (i = T, P)

urther analysis depends on the interrelation between the value
f Kn, or, the same, between the relation between lf and dp.
he regime where lf � dp (Kn � 1) is well studied: it is the
ase of Knudsen flow in a porous medium. In this case the flux
s proportional to PT−1/2 [1]. For example, for the case of the
sotropic “absolutely chaotic” porous medium (where no regular
tructure may be imposed) it has been established [1,22] that

= βφ

S
v

(∇T
2T

− ∇P
P

)
, β = 24

9 + 4A

√
2

π
(7)

ereφ is the porosity, S the specific internal surface of the porous
edium (in m2/m3), and A is the accommodation coefficient.
he fraction A of the particles accommodates on the surface and

s dispersed as an equilibrium gas with the temperature of the
urface, and 1 − A is reflected from the surface without energy
xchange. Commonly, the value of A is close to unity [23], so
hat β = αP is close to 1.5. The value of αT in this case is equal
o αP/2.
For the specific internal surface of the porous medium S, the
alue of S−1 is a good measure of the pore size dp or of a grain
adius r, which is usually of the same order of magnitude as dp.
or example, if the grains are spherical, and their concentration

w
O
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er unit volume is C, then [24]:

= 1 − 4π

3
r3C, S = 4πr2C, (8)

r

= 3(1 − φ)

S
, C = S3

36π(1 − φ)2

For a model porous medium consisting of the cylindrical
apillaries of the same diameter dp,

p = 4φ

S

In practical applications, it is more convenient to work
irectly with the specific surface, since it is measurable (for
xample, by the nitrogen adsorption). In the following, we select
−1 as an estimate for the value ofdp in the dimensionless param-
ter Kn. However, in order to better understand the transport
rocesses, it is convenient to rewrite Eq. (7) in terms of r or dp:

= − αφ

3(1 − φ)
rv

(∇T
2T

− ∇P
P

)
or

= −α
4
dpv

(∇T
2T

− ∇P
P

)

The last regime, where lf ∼ dp, is less studied than the other
egimes. It will be called “the dense kinetic regime”, or “the
ntermediate regime”. The formulae for the Knudsen regime are
ot applicable to the intermediate regime, although the condi-
ions of the non-structured flow may still be valid. Taking into
ccount the preceding considerations, we reduce Eq. (6) to the
orm of

= αT(Kn)

S
v
∇T
T

− αP(Kn)

S
v
∇P
P
, Kn = lfS (9)

It is more convenient to represent this equation in a slightly
ifferent form:

φ−1v−1u = β

(
βT

∇T
T

− 1

P
∇P
)

(10)

Both β and βT are functions of Kn. Eq. (10) is more conve-
ient, since, as we will show, coefficients β, βT in many cases
re constants. This equation may be used to express the transport
aw in thermodynamic rather than kinetic variables: it is enough
o substitute (RT/M)1/2 for v, where R is the gas constant and

is the molar mass.
More detailed physical considerations are required to deter-

ine these coefficients as functions of the pore geometry and of
he Knudsen number Kn. While parameter β (or αP) is likely to
e positive, the sign of βT (or αT) remains, a priori, indefinite.
elow we apply the methods of the gas kinetic theory in order to
et a more precise answer about the values of these parameters.

. Simplified derivation
Before describing the kinetic derivation “on a full scale”,
e would like to present a simplified mechanistic derivation.
ur goal is to clarify the logic behind the kinetic derivation and
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o show how the description of the non-structured flow, within
multiplier of the order of unity, may be obtained from the

elatively simple considerations, similar to those applied by the
ounders of the gas kinetic theory, Clausius and Maxwell.

For a simplified derivation, it is necessary to assume a model
f the porous medium. There are two principal types of such
odels: a porous medium as a capillary network, or as a system

f solid particles—a granular packing. In Section 3.1 we repeat,
riefly and as generally as possible, the known derivation of the
ow equation for a capillary network and show that a system of
bvious assumptions may in this case only lead to the equations
f the Knudsen regime.

Then we proceed to the model of the porous medium as
granular packing and show that a simplified description of

he dense kinetic flow regime (apart from the thermal effect) is
ossible for this model.

.1. Knudsen regime

Let us briefly remind of the well-known derivation of the flow
quation for the Knudsen flow regime. Consider a cylindrical
olume of a homogeneous porous medium directed parallel to
he flow. The height of the cylinder is l, and the cross-section is
.

Consider the fluxes jR and jL entering the section from the
ight and from the left, correspondingly (axis x is directed from
he left to the right, as usual). Obviously, these fluxes are pro-
ortional to the particle concentration (numerical density) N and
o the average molecular velocity v. Porosity should enter the
xpression, since the flow occurs only through part φ of the sur-
ace. The resulting expression for the flux through the section
s

= jL − jR = αφ(NLvL −NRvR) ≈ −αφl∂(Nv)
∂x

(11)

The last transition is possible if the value of l is small, or if
he gradient is uniform. A non-trivial assumption of the whole
erivation is that l cannot tend to zero, otherwise the flux per
nit area vanishes. A characteristic value of l is usually selected
o be equal to the pore size dp, or to the inverse specific internal
urface S−1. The numerical multiplierα is a constant determined
y a particular model of the porous medium [1]. An expression
or the superficial flux (unlike Eq. (11) for the interstitial flux j)
equires an additional multiplier φ on the right-hand side.

Eq. (11) expresses the well-known Knudsen law for gas flow
n a porous medium. In view of Eq. (2), it predicts that the flux
s proportional to the gradient of NT 1/2or, the same, PT−1/2.
his is true for the Knudsen regime, but not for the intermediate
inetic regime, as will be shown below.

This indicates the limits of a “naive” derivation of the trans-
ort equation based on a capillary network model. Any such
erivation is reduced to the considerations above and, thus,
esults in the equations for the Knudsen regime. The reason

s that we implicitly assume that fluxes jR and jL do not inter-
ct. This assumption is violated for denser flows, especially, if lf
ecomes of the order of dp. In order to generalize the approach,
t is necessary to introduce the interactions between jR and jL.

p

M
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owever, this seems to be a non-trivial task within a capillary
etwork model.

.2. Dense kinetic regime

As shown in Section 3.1, the governing equation for this
egime cannot be derived from the “capillary network” point
f view. Alternatively, we may consider a porous medium as a
ystem of solid grains, as in the dusty-gas model [1].

We assume that all the grains are similar. This assumption
ay be shown to be non-restrictive. Moreover, for the present

implified derivation it is convenient to consider the grains of a
ylindrical shape, with the cross-section Ag orthogonal to flow,
nd length (height) lg. Assuming so, we obtain an answer within
n order of magnitude, which we do anyway. In Section 4 we
ill generalize these results onto nearly arbitrary grain shapes.
If the numerical concentration of the solid grains is C, their

umber in volume V is CV. Additionally, if Vg = Aglg is the
olume of a single grain, then

Vg = 1 − φ (12)

Instead of computing the mass balance, as in the previous
ubsection, we will consider the momentum balance. The total
orce acting on the gas in the volume V is

= (PL − PR)A ≈ −V dP

dx
(13)

Instead of the total force F it is convenient to consider force
1 acting on each grain of the porous medium:

= CVF1

Comparing this equation to Eq. (13), we obtain

dP

dx
= CF1 (14)

Another expression for F1 may be obtained by considering
he flowing gas. Assume that its average convective velocity is
. Then the average molecular rate in the direction of the flow is
+ u (within a certain approximation). Let subscripts ‘L’ and

R’ mean to the right and to the left from a single grain of the
orous medium. The average number of the particle collisions
ith the left face of the grain per time unit is NL(vL + u)/2.
ere the multiplier 1/2 is introduced, since half of the molecules
ove in the opposite direction. Assume that a molecule accom-
odates on the surface, that is, it is reflected with the average

quilibrium velocity −vL. Then a single molecule transfers
n one collision a momentum equal to m(2vL + u). The over-
ll momentum transferred from the left to the grain per time
nit is

L = 1

2
mNL(vL + u)(2vL + u)
Similarly, the momentum per time unit transferred to the
article from the right is

R = 1

2
mNR(vR − u)(2vR − u)
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The difference ML −MR should be equal to force F1. After
ome rearrangement, it may be reduced to the form of

1 = FP + Fv (15)

FP = Ag[mNLv
2
L −mNRv

2
R],

Fv = 3Agm
NLvL +NRvR

2
u (16)

In order to simplify the expression for FP, let us notice that
he value of mNv2 = NkT is exactly the pressure of an ideal
as. Thus,

P = Ag(PL − PR) ≈ −Vg
dP

dx

In order to calculate Fv, the sumNLvL +NRvR on the right-
and side of Eq. (16) may be substituted by its mean value Nv,
hich is possible due to the small grain sizes. Substituting every-

hing back to Eq. (14) and taking into account Eq. (12), we obtain
he transport equation in the form of

φ
dP

dx
= 3CAgρvu

For the grains of regular shapes, the value ofCAg may, within
numerical multiplier, be identified with the internal surface S.
inally, we obtain

φ
dP

dx
= α′Sρvu (17)

Here α′ is a numerical multiplier depending on the grain
hapes and other parameters of geometry of the porous space.

For isothermal flows, Eq. (17) is similar to Eq. (11) for the
nudsen regime (although the multipliers α and α′ may be dif-

erent). However, there is an important difference between these
wo flow equations: The Knudsen regime equation (11) con-
ains a term proportional to the temperature gradient, while Eq.
17) does not contain such a term, similar to the well-known
arcy law for viscous regime. A reason why we do not obtain

he thermal gradient contribution in the dense kinetic regime is
hat in the derivation of this section we have implicitly assumed
hat, in spite of the presence of the thermal gradient, the gas is
n thermal equilibrium. It is known, however, that the thermal
radient introduces corrections to the gas distribution, which
ay be evaluated on the basis of the Chapman–Enskog expan-

ion of the Boltzmann equation (see below). These corrections
re difficult to introduce in the framework of the empirical
erivation. It is necessary to carry out the full-scale kinetic
erivation in order to account for the effect of the thermal gradi-
nt in the kinetic regime. Such a kinetic derivation is presented
elow.

. Gas kinetic derivation
.1. Basic assumptions

The kinetic derivation needs precise definition of the phys-
cal conditions and underlying assumptions. We consider a

n
l
o
m

gineering Journal 142 (2008) 14–22

teady-state flow of a single-component gas in the intermedi-
te regime. The flow conditions are such that collisions between
he gas molecules are more frequent than collisions with the pore
alls. However, the viscous flow structure is not formed. In this

ssumption, the system considered becomes similar to the case
f “motion of a heavy gas in a light gas”, which is described
n a system of coordinates connected to heavy molecules [16].
his approach is different from the approach of the “dusty-gas”
odel [1] where expansion is carried out around the equilibrium

tate corresponding to zero gas velocity u = 0. Equilibration in
as is achieved much faster than between the gas and the porous
edium. In zero approximation, the distribution of the molec-

lar rates v is the common Maxwell distribution corresponding
o numerical particle density N, temperature T and average gas
elocity u:

f (0)(v|T,u) = N

(
2πkT

m

)−3/2

exp

(
−mV2

2kT

)
,

V = v − u (18)

In Ref. [25] it was shown that f (0) is a zero approximation to
he real distribution of the gas molecules in the porous medium.
ubsequent approximations may be obtained by the multiscale
xpansion procedure similar to the Chapman–Enskog method.
n the first approximation to function f the term f (1) proportional
o the thermal gradient has the same form as in the common
hapman–Enskog expansion for the gas in free space. The
orous medium introduces into the expansion additional terms
roportional to u, which contribution to the transport equations
ay be neglected compared to the contribution of the zero-order

erm. The term proportional to the thermal gradient cannot be
eglected, since, as shown below, the zero-order approxima-
ion f (0) does not contribute to the thermal force. Combination
f the equations from Chapter 7 of [27] shows that the main
erm in the expansion of f (1) by Sonine polynomials is equal
o

(1) = − 1

ρ

2m2

5(kT )2 λ

(
mV
2kT

2

− 5

2

)
f (0)(V∇T ) (19)

Here λ is the gas heat conductivity, in J/(m s grad).
The total distribution of the gas molecules by velocities will

e approximated by

= f (0) + f (1)

Further approximations will be omitted.
The collisions of the gas molecules with the internal surface

f the porous medium are described by the reflection kernel
(v1 → v2|n, TP). This is the probability density of the event

hat a molecule with velocity v1 after collision with the surface
ith external normal n acquires velocity v2. Here TP is the tem-
erature of the porous medium, which, in principle, may or may

ot be equal to the gas temperature T. The temperature equi-
ibration is a relatively fast process [25]. Indeed, equilibration
f the temperature in solid is fast, since its heat diffusivity is
uch higher than that of the gas. Equilibration of the tempera-
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ure between the gas and the porous medium is also rather fast.
t is proportional to the contact surface S between gas and solid,
hich is rather large for most porous media. Thus, we assume

hat T = TP, as in Section 3.2. Additional introduction of the
ifference T − TP would not change the momentum balance, at
east, in the first approximation, in view of the vector character
f this balance.

Kernel B is normalized to unity:

v2n>0
B(v1 → v2|n, T ) dv2 = 1, (v1n < 0) (20)

or particular calculations we will use a model for B of the type
f full accommodation (dispersive reflection). If the molecules
olliding with the surface “forget” their past and assume equi-
ibrium distribution with the temperature of the surface, then
23]:

B(v1 → v2|n, T ) =
(

2πm

kT

)1/2

N−1F (v2|T )(v2n),

(v1n < 0, v2n > 0) (21)

Here N is the number density, and f0 is the Maxwell distri-
ution corresponding to zero velocity u:

0(v|T ) = N

(
2πkT

m

)−3/2

exp

(
−mv

2

2kT

)
(22)

n this or any other particular case, B obeys the principle of
icroreversibility [16]:

|v1n|f0(v1|T )B(v1 → v2|n)

= |v2n|f0(v2|T )B(−v2 → −v1|n) (23)

As shown below, this principle makes it possible to find most
f the expressions involved without referring to particular form
f the kernel B. Taking into account that the accommodation
oefficient is normally close to unity, especially for the “rough”
urfaces, it may be concluded that assumption about complete
ccommodation does not influence very much the calculated
alues of the transfer coefficients.

Another general property of kernel B is the conservation law
or the particles in a collision:

B(v1 → v2|n) dv2 = 1 (24)

.2. Outline of the derivation

The goal of this subsection is to express the transport law in
erms of the distributions introduced above. First, let us consider
istribution fa(v|T,u,n) of the molecules attacking the porous
urface at a certain point, and distribution fr(v|T,u,n) of the
olecules reflected from this surface (both distributions nor-

alized to the numbers of such particles; we take into account

hat T = TP). Function fa is expressed as

a(v|T,u,n) = |vn|f (v|T,u), vn < 0 (25)

t

i
a
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Function fr is expressed in terms of fa and the reflection
ernel B:

r(v|T,u,n) =
∫

v1n<0
B(v1 → v|n, T )fa(v1|T,u,n) d3v1

=
∫

v1n<0
|v1n|B(v1 → v|n, T )f (v1|T,u) d3v1

(26)

As in the previous section, we derive the transport law from
he momentum balance for an elementary volume V of a cylindri-
al shape, with cross-section A and height (length) l. We choose
he direction of the cylinder to be parallel to the unit vector nP
f the pressure gradient. The gas in the volume is affected by the
ressure force F, equal to the difference of pressures applied to
rea A from different sides of the cylinder:

= −A
PnP ≈ −Al∇P = −V∇P (27)

Force F should be equal to momentum per time unit M, which
s transferred from the molecules to the solid particles. This

omentum is evaluated as

M = Ma − Mr, Ma =
∫

d2S

∫
vn<0

mvfad3v,

Mr =
∫

d2S

∫
vn>0

mvfrd
3v, (28)

Here fa and fr are functions introduced in Eqs. (25) and (26).
ach of these functions is a sum of the two addenda correspond-

ng to the approximations f (0) and f (1) in the Chapman–Enskog
xpansion for f (see Eqs. (18) and (19)). In the following, we
resent only computations corresponding to approximationf (0).
omputations for f (1) are fully similar. Later in Section 4.5 we
ring formula for the contributions M(1)

a , M(1)
r of f (1).

Direct calculation of the integrals involved in the expressions
or M(0)

a and M(0)
r is hardly possible. It becomes possible, how-

ver, if we expand the Maxwell distribution (18) with regard to
elocity u. Applying Eq. (22) gives

f (0)(v|T,u) = f1 + f2 + o(u), f1 = f0(v|T ),

f2 = f0(v|T )
m(vu)

kT
(29)

In view of expansion (29), distributions fa, fr, and the cor-
esponding force momenta Ma, Mr are also split into the two
ddenda: Ma1,Ma2, and Mr1,Mr2, correspondingly. The result-
ng force balance, accounting for Eqs. (27) and (28) may be
epresented in the form of

V∇P + Mr1 − Ma1 + M(1)
r − M(1)

a = Ma2 − Mr2 (30)

The left-hand side of the last equation depends only on the
hermodynamic variables, while the right-hand side is propor-

ional to velocity u.

Computation of the integrals Mai, Mri, M(1)
a , M(1)

r consists
n multiple integration and is rather straightforward, apart from

few details. First, we will split the integration over velocity
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grals listed in the Appendix A. The results are

4
√

2
(
kT
)1/2
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d3v into the product of the integral
∫
v2 dv over the absolute

elocity value and the integral
∫

d2nv over a unit vector parallel
o velocity:

d3v =
∫
v2dv

∫
d2nv (31)

Integration over d2S in Mr1, Ma1 may be carried out directly,
ithout any assumption about the internal surface. This is shown

n the next subsection. For Ma2,Mr2, an additional assump-
ion about the structure of the internal surface is needed. We
ssume that the surface is isotropic and equally accessible to
he molecules, that is, that all the directions of the normal n to
he surface are equiprobable. In this case, by definition of the
pecific surface S,

d2S = VS

4π

∫
d2n (32)

The unit vector n is normal to the surface and directed into
he porous space. Thus, integrations

∫
d2nv,

∫
d2n are carried

ut over a unit sphere.
The assumption about equal accessibility of all the internal

oints of the surface is rather restrictive. It may be violated in
tructured porous media and in porous media with wide pore
ize distributions. There may be small or narrow pores where
he particles are entrapped, or tortuous capillaries where they are
ntangled. Moreover, the assumption may be violated in cases
f strong interactions between the gas particles in the porous
alls. In the last cases, the particles may be adsorbed on the
alls or form non-uniform adjacent layers [26]. Surface flows

lso become important in these cases. Most of the mentioned
henomena may be incorporated into the model being devel-
ped. However, we do not consider them here, trying to present
s simple model as possible. Possible extensions are subject to
separate work.

.3. Integrals Mr1, Ma1

The goal of this subsection is to show that integrals Mr1,Ma1
re neither dependent on the distribution of the internal surface
the shapes of the grains), nor on the character of collisions
kernel B). More particularly, we will show that

r1 = −Ma1 = 1

2
(1 − φ)V∇P, (33)

so that

r1 − Ma1 = CVg∇P = (1 − φ)V∇P (34)

First, let us exclude the collision kernel B. This kernel enters
r1, through fr1 (see Eqs. (26) and (28)):

r1 =
∫

v1n<0
|v1n|B(v1 → v|n)f0(v1|T ) d3v1,
pplication of the principle of microscopic reversibility (23)
nd integration over −v1 by use of Eq. (24) result in

r1 = |vn|f0(v|T ) = fa1
gineering Journal 142 (2008) 14–22

From this equation and Eq. (28) it follows that Mr1 = −Ma1,
nd only one of these integrals must be calculated. We have

a1 = m

∫
d2S

∫
vn<0

d3v {|vn|f0(v|T )v}

ntegration over d3v with the help of Eq. (31) and standard
ntegrals (see Appendix A) results in

a1 = −1

2

∫
nNkTd2S = −1

2

∫
Pnd2S

Here integration is carried out over the external surface of
he grains of the porous medium. With the help of the Gauss
heorem, this integral may be transformed to the integral over
he volume of the grains:

a1 = −1

2

∫
∇Pd3Vg

Considering the pressure gradient to be approximately con-
tant over the selected elementary volume and taking into
ccount that Vg = (1 − φ)V , we reduce the last equation to the
orm (33). Thus, both this equation and Eq. (34) are proven.

The fact that the difference Mr1 − Ma1 is always the same
s not surprising. Indeed, this difference expresses the pressure
orce acting on the grains of the porous medium. Another term
n the left-hand side of Eq. (30), −V∇P , expresses the pressure
orce acting on the whole volume containing porous medium +
as. The rest part of the force, −φV∇P , acts only on gas. This
xplains the appearance of the porosity φ on the left-hand sides
f Eqs. (7) and (17) (and, later, Eq. (37)).

.4. Integrals Mr2,Ma2

Computation of these integrals is straightforward, but cum-
ersome. The answer depends on the structure of the internal
urface and, for Mr2, also on the reflection kernel. For
xample, for the case of complete accommodation (21) and
sotropic internal surface (32) integral Mr2 assumes the form
f

r2 = −mNVS2−9/2π−7/2
(
kT

m

)−7/2 ∫
d2n

∫
vn>0

dv

×
∫

dnv

∫
nv1n<0

d2nv1

∫ ∞

0
dv1

{
(nv1n)(nvn)(nv1u)v4

1v
4

× exp

(
−mv

2

2kT

)
exp

(
−mv

2
1

2kT

)
nv

}

Further integration is carried out by application of the inte-
Ma2 =
3 π

VρS
m

u,

Mr2 = −
√

2π

12
VρS

(
kT

m

)1/2

u (35)
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.5. Contribution of the first approximation

Computation of the integrals arising from the first approxi-
ation is similar to the computation of Mr2, Mr2. It may be

erived that

(1)
r − M(1)

a = 4

15

√
2

π
VSλ

(
kT

m

)−1/2

∇T (36)

.6. Final result

Substitution of Eqs. (34) and (35) into Eq. (30) results in

V∇P + (1 − φ)V∇P + 4

15

√
2

π
VSλ

(
kT

m

)−1/2

∇T

= 4

3

√
2

π
VρS

(
kT

m

)1/2

u +
√

2π

12
VρS

(
kT

m

)1/2

u,

r

φ∇P + 4

15

√
2

π
Sλ

(
kT

m

)−1/2

∇T = 16 + π

6
√

2π
Sρ

(
kT

m

)1/2

u

(37)

This is the final expression for the gas transport law in the
ense kinetic regime.

. Discussion of the results

We have the transport law for gas in a tight porous medium
n different regimes, using, subsequently, dimensionality consid-
rations, simple mechanistic considerations, and the gas kinetic
heory. Not surprisingly, the resulting expressions are similar. All
f them may be represented in the common form (10), which
e repeat for convenience:

φ−1v−1u = β

(
βT

∇T
T

− 1

P
∇P
)

Coefficient β is constant in all the regimes considered. This
onstant, however, is different for the different regimes (Knud-
en or intermediate, Eqs. (7) and (37), correspondingly). For the
ase of complete accommodation, it is equal to (24/13)

√
2/π ≈

.5 for the Knudsen regime, and 6
√

2π/(16 + π) ≈ 0.8 for the
ense kinetic regime. The fact that for the dense kinetic regime β
s lower corresponds to the well-known minimum of the gas per-

eability at intermediate pressures [1]. Our approach seems to
e rather advantageous for description of this minimum, clearly
valuating its value.

It should be taken into account that constant βwas calculated
or fully chaotic porous media, where the collisions with all
he points of the internal surface are equally probable, and this
urface is isotropic. For more ordered media this constant may

lso depend on the assumed shapes of the grains or capillaries,
lthough this dependence is not very strong [1].

The value of βT behaves less trivially. While it is equal to 1/2
or the Knudsen regime, for the dense regime it is expressed as

e
T
a
p
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ollows (cf. Eqs. (10) and (37)):

T = 8λS

15
√

2πvRNφ

Thus, βT depends on both the thermodynamic parameters
f gas and the porous medium. The value of βT may also be
xpressed as a function of porosity and dimensionless parameter
n = lfS introduced in Section 2. In order to do so, the well-
nown kinetic expression for heat conductivity, λ = ψNcvvlf,
s used. Here cv is gas heat capacity at constant volume, and

dimensionless parameter depending on the type of collisions
close to 1/3). Substitution of the last expression for λ results
n

T = 8ψγKn

15
√

2πφ
≈ 0.07

γKn

φ
, γ = cv

R

Thus, in the dense kinetic regime the value of βT is propor-
ional to Kn. This results in a rather non-trivial transport law
nder constant pressure (not density!) in this regime:

= 48λ

15(16 + π)P
∇T (38)

As in the Knudsen regime, the gas flows from the cold to
he hot side. However, unlike the Knudsen regime, the trans-
ort coefficient in the dense kinetic regime is independent of
he properties of the porous medium (at least for the case where
his porous medium is fully non-structured and isotropic). This
s explained by the fact that Eq. (38) is obtained by equating
wo forces: the friction force of the moving gas and the “ther-

al force” arising from the non-equilibrium gas temperature
istribution. Both forces are proportional to the specific surface,
hich, thus, disappears when they are equated. In a different
ay, this independence of the parameters of the porous medium
ay be illustrated by considering the friction and the thermal

orce per one grain of the porous medium and then summing
ver all the grains.

Experimental determination of the value of βT is possible
n a steady-state flow experiment. The steady-state condition is
iven by

T−βT = const (39)

necessity for experimental determination of βT (as well as β)
rises from the fact that the transition from the Knudsen to the
ense kinetic regime and further to the Darcy regime (where βT
s traditionally considered to be equal to zero) is not clear. As
iscussed in Section 2, all the three regimes correspond to cer-
ain asymptotics where the different parameters tend to zero or
o infinity. Intermediate cases cannot be described in this way.
enerally speaking, neither kinetic derivation can fully describe

ransition from the kinetic to the Darcy regime, from the non-
tructured molecular to the structured flow. Correct description
f the Darcy regime is obtained by averaging of the ‘Stokes

quations in the porous space (for example, similar to [11]).
ransition between the regimes is achieved by application of the
dditivity assumption [1], or, almost equivalently, by an inter-
olation formula [8]. Most of these approaches do not account
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or minimum of permeability caught by our approach. A rigor-
us theory for transition between the Knudsen and the Darcy
egimes probably requires an innovative approach and is still to
e developed.

. Conclusion

We have developed a gas kinetic approach to the descrip-
ion of the gas flow in a porous medium in the intermediate
ow regime. The computations based on the gas kinetic the-
ry are confirmed by a simplified derivation, as well as by the
nalysis of dimensions. Special attention was paid to the con-
ribution of the thermal gradient to the transport law. It was
roven that this gradient is important to both the Knudsen and
he dense kinetic regimes, although it plays totally different roles
n these regimes. Experiments are needed in order to confirm
r to disprove this statement, and to check the involvement of
he thermal gradient for gas flow in different thermodynamic
onditions.

The developed theory may be generalized onto phoresis of
eavy particles in gas. However, additional developments are
eeded in order to do so, and additional thermal effects may be
nvolved. Another generalization to be considered separately is
he flow of the gas mixtures.

ppendix A. Calculation of the kinetic integrals

In this appendix we list the integrals which are used for com-
utations in Sections 4.3 and 4.4. The integral over the absolute
alue of velocity v is carried out with the help of the standard
ntegrals of the type of

∫
vβ exp(−αv2) dv. Integrals over dn,

nv, dnv1 should be taken in a certain order: first, over dnv1,
hen over dnv, and afterwards over dn. In these calculations,
he following integrals are applied (similar to those used in the
nskog theory of dense gases [18]):

∫
n1n<0

d2n1(n1n) =
∫

n1n>0
d2n1(n1n) = 2π;
∫
n1n<0

d2n1(n1n)n1 =
∫

n1n>0
d2n1(n1n)n1 = 2π

3
n

These equalities are easy to check by selecting n = (0, 0, 1)).
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